
Filesystems that manage the storage across a network of machines are called distributed filesystems.

Without the namenode, the filesystem cannot be used. In fact, if the machine running
the namenode were obliterated, all the files on the filesystem would be lost since there
would be no way of knowing how to reconstruct the files from the blocks on the
datanodes. For this reason, it is important to make the namenode resilient to failure,
and Hadoop provides two mechanisms for this.

The secondary namenode usually
runs on a separate physical machine because it requires plenty of CPU and as much
memory as the namenode to perform the merge. It keeps a copy of the merged name‐
space image, which can be used in the event of the namenode failing. However, the state
of the secondary namenode lags that of the primary, so in the event of total failure of
the primary, data loss is almost certain. The usual course of action in this case is to copy
the namenode’s metadata files that are on NFS to the secondary and run it as the new
primary.

Users or applications instruct the namenode which files to cache (and for how long) by
adding a cache directive to a cache pool. Cache pools are an administrative grouping for
managing cache permissions and resource usage.

Data Flow
Anatomy of a File Read
To get an idea of how data flows between the client interacting with HDFS, the name!
node, and the datanodes, consider Figure 3-2, which shows the main sequence of events
when reading a file.

Figure 3-2. A client reading data from HDFS

The client opens the file it wishes to read by calling open() on the FileSystem object,
which for HDFS is an instance of DistributedFileSystem (step 1 in Figure 3-2).
DistributedFileSystem calls the namenode, using remote procedure calls (RPCs), to
determine the locations of the first few blocks in the file (step 2). For each block, the
namenode returns the addresses of the datanodes that have a copy of that block. Fur!
thermore, the datanodes are sorted according to their proximity to the client (according
to the topology of the cluster’s network; see “Network Topology and Hadoop” on page
70). If the client is itself a datanode (in the case of a MapReduce task, for instance), the
client will read from the local datanode if that datanode hosts a copy of the block (see
also Figure 2-2 and “Short-circuit local reads” on page 308).

The DistributedFileSystem returns an FSDataInputStream (an input stream that
supports file seeks) to the client for it to read data from. FSDataInputStream in turn
wraps a DFSInputStream, which manages the datanode and namenode I/O.

The client then calls read() on the stream (step 3). DFSInputStream, which has stored
the datanode addresses for the first few blocks in the file, then connects to the first

Data Flow | 69

(closest) datanode for the first block in the file. Data is streamed from the datanode back
to the client, which calls read() repeatedly on the stream (step 4). When the end of the
block is reached, DFSInputStream will close the connection to the datanode, then find
the best datanode for the next block (step 5). This happens transparently to the client,
which from its point of view is just reading a continuous stream.

Blocks are read in order, with the DFSInputStream opening new connections to
datanodes as the client reads through the stream. It will also call the namenode to retrieve
the datanode locations for the next batch of blocks as needed. When the client has
finished reading, it calls close() on the FSDataInputStream (step 6).

During reading, if the DFSInputStream encounters an error while communicating with
a datanode, it will try the next closest one for that block. It will also remember datanodes
that have failed so that it doesn’t needlessly retry them for later blocks. The DFSInput
Stream also verifies checksums for the data transferred to it from the datanode. If a
corrupted block is found, the DFSInputStream attempts to read a replica of the block
from another datanode; it also reports the corrupted block to the namenode.

One important aspect of this design is that the client contacts datanodes directly to
retrieve data and is guided by the namenode to the best datanode for each block. This
design allows HDFS to scale to a large number of concurrent clients because the data
traffic is spread across all the datanodes in the cluster. Meanwhile, the namenode merely
has to service block location requests (which it stores in memory, making them very
efficient) and does not, for example, serve data, which would quickly become a bottle!
neck as the number of clients grew.

Network Topology and Hadoop
What does it mean for two nodes in a local network to be “close” to each other? In the
context of high-volume data processing, the limiting factor is the rate at which we can
transfer data between nodes—bandwidth is a scarce commodity. The idea is to use the
bandwidth between two nodes as a measure of distance.

Rather than measuring bandwidth between nodes, which can be difficult to do in prac!
tice (it requires a quiet cluster, and the number of pairs of nodes in a cluster grows as
the square of the number of nodes), Hadoop takes a simple approach in which the
network is represented as a tree and the distance between two nodes is the sum of their
distances to their closest common ancestor. Levels in the tree are not predefined, but it
is common to have levels that correspond to the data center, the rack, and the node that
a process is running on. The idea is that the bandwidth available for each of the following
scenarios becomes progressively less:

• Processes on the same node
• Different nodes on the same rack

70 | Chapter 3: The Hadoop Distributed Filesystem

8. At the time of this writing, Hadoop is not suited for running across data centers.

• Nodes on different racks in the same data center
• Nodes in different data centers8

For example, imagine a node n1 on rack r1 in data center d1. This can be represented
as /d1/r1/n1. Using this notation, here are the distances for the four scenarios:

• distance(/d1/r1/n1, /d1/r1/n1) = 0 (processes on the same node)
• distance(/d1/r1/n1, /d1/r1/n2) = 2 (different nodes on the same rack)
• distance(/d1/r1/n1, /d1/r2/n3) = 4 (nodes on different racks in the same data center)
• distance(/d1/r1/n1, /d2/r3/n4) = 6 (nodes in different data centers)

This is illustrated schematically in Figure 3-3. (Mathematically inclined readers will
notice that this is an example of a distance metric.)

Figure 3-3. Network distance in Hadoop

Finally, it is important to realize that Hadoop cannot magically discover your network
topology for you; it needs some help (we’ll cover how to configure topology in “Network
Topology” on page 286). By default, though, it assumes that the network is flat—a single-
level hierarchy—or in other words, that all nodes are on a single rack in a single data
center. For small clusters, this may actually be the case, and no further configuration is
required.

Data Flow | 71

Anatomy of a File Write
Next we’ll look at how files are written to HDFS. Although quite detailed, it is instructive
to understand the data flow because it clarifies HDFS’s coherency model.

We’re going to consider the case of creating a new file, writing data to it, then closing
the file. This is illustrated in Figure 3-4.

Figure 3-4. A client writing data to HDFS

The client creates the file by calling create() on DistributedFileSystem (step 1 in
Figure 3-4). DistributedFileSystem makes an RPC call to the namenode to create a
new file in the filesystem’s namespace, with no blocks associated with it (step 2). The
namenode performs various checks to make sure the file doesn’t already exist and that
the client has the right permissions to create the file. If these checks pass, the namenode
makes a record of the new file; otherwise, file creation fails and the client is thrown an
IOException. The DistributedFileSystem returns an FSDataOutputStream for the
client to start writing data to. Just as in the read case, FSDataOutputStream wraps a
DFSOutputStream, which handles communication with the datanodes and namenode.

As the client writes data (step 3), the DFSOutputStream splits it into packets, which it
writes to an internal queue called the data queue. The data queue is consumed by the
DataStreamer, which is responsible for asking the namenode to allocate new blocks by
picking a list of suitable datanodes to store the replicas. The list of datanodes forms a
pipeline, and here we’ll assume the replication level is three, so there are three nodes in

72 | Chapter 3: The Hadoop Distributed Filesystem

the pipeline. The DataStreamer streams the packets to the first datanode in the pipeline,
which stores each packet and forwards it to the second datanode in the pipeline. Sim!
ilarly, the second datanode stores the packet and forwards it to the third (and last)
datanode in the pipeline (step 4).

The DFSOutputStream also maintains an internal queue of packets that are waiting to
be acknowledged by datanodes, called the ack queue. A packet is removed from the ack
queue only when it has been acknowledged by all the datanodes in the pipeline (step 5).

If any datanode fails while data is being written to it, then the following actions are
taken, which are transparent to the client writing the data. First, the pipeline is closed,
and any packets in the ack queue are added to the front of the data queue so that
datanodes that are downstream from the failed node will not miss any packets. The
current block on the good datanodes is given a new identity, which is communicated to
the namenode, so that the partial block on the failed datanode will be deleted if the failed
datanode recovers later on. The failed datanode is removed from the pipeline, and a
new pipeline is constructed from the two good datanodes. The remainder of the block’s
data is written to the good datanodes in the pipeline. The namenode notices that the
block is under-replicated, and it arranges for a further replica to be created on another
node. Subsequent blocks are then treated as normal.

It’s possible, but unlikely, for multiple datanodes to fail while a block is being written.
As long as dfs.namenode.replication.min replicas (which defaults to 1) are written,
the write will succeed, and the block will be asynchronously replicated across the cluster
until its target replication factor is reached (dfs.replication, which defaults to 3).

When the client has finished writing data, it calls close() on the stream (step 6). This
action flushes all the remaining packets to the datanode pipeline and waits for ac!
knowledgments before contacting the namenode to signal that the file is complete (step
7). The namenode already knows which blocks the file is made up of (because Data
Streamer asks for block allocations), so it only has to wait for blocks to be minimally
replicated before returning successfully.

Replica Placement
How does the namenode choose which datanodes to store replicas on? There’s a trade-
off between reliability and write bandwidth and read bandwidth here. For example,
placing all replicas on a single node incurs the lowest write bandwidth penalty (since
the replication pipeline runs on a single node), but this offers no real redundancy (if the
node fails, the data for that block is lost). Also, the read bandwidth is high for off-rack
reads. At the other extreme, placing replicas in different data centers may maximize
redundancy, but at the cost of bandwidth. Even in the same data center (which is what
all Hadoop clusters to date have run in), there are a variety of possible placement
strategies.

Data Flow | 73

Hadoop’s default strategy is to place the first replica on the same node as the client (for
clients running outside the cluster, a node is chosen at random, although the system
tries not to pick nodes that are too full or too busy). The second replica is placed on a
different rack from the first (off-rack), chosen at random. The third replica is placed on
the same rack as the second, but on a different node chosen at random. Further replicas
are placed on random nodes in the cluster, although the system tries to avoid placing
too many replicas on the same rack.

Once the replica locations have been chosen, a pipeline is built, taking network topology
into account. For a replication factor of 3, the pipeline might look like Figure 3-5.

Figure 3-5. A typical replica pipeline

Overall, this strategy gives a good balance among reliability (blocks are stored on two
racks), write bandwidth (writes only have to traverse a single network switch), read
performance (there’s a choice of two racks to read from), and block distribution across
the cluster (clients only write a single block on the local rack).

Coherency Model
A coherency model for a filesystem describes the data visibility of reads and writes for
a file. HDFS trades off some POSIX requirements for performance, so some operations
may behave differently than you expect them to.

After creating a file, it is visible in the filesystem namespace, as expected:
 Path p = new Path("p");
 fs.create(p);
 assertThat(fs.exists(p), is(true));

74 | Chapter 3: The Hadoop Distributed Filesystem

	Data Flow
	Anatomy of a File Read
	Anatomy of a File Write
	Coherency Model

