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Filesystems that manage the storage across'a network of machines are called distributed filesystems

HOFS design

Very large ﬁl‘és

“Very large” in this context means files that are hundreds of megabytes, gigabytes,

or terabytes in size. There are Hadoop clusters running today that store petabytes

of data.?

Streaming data access

HDFS is built around the idea that the‘most efficient data processing pattern is a
write-once, read-many-times pattern. A dataset is typically generated or copied

from source, and then various analyses are performed on that dataset over time.

Each analysis will involve a large proportion, if not all, of the dataset, so the time

to read the whole dataset is more important than the latency in reading the first

record.

Commodity hardware
Hadoop doesn't require expensive, highly reliable hardware. It’s'designed to run on

clusters of commodity hardware (commonly available hardware that can be ob-

tained from multiple vendors)®for which the chance of node failure across the
cluster is high, at least for large clusters. HDFS is designed to carry on working

without a noticeable interruption to the user in the face of such failure.

Not dest

Low-latency data access

~

Applications that require low-latency access to data, in the tens of milliseconds
range, will not work well with HDFS. Remember, HDES is optimized for delivering

a high throughput of data, and this may be at the expense of latency. HBase (see

Chapter 20) is currently a better choice for low-latency access.

[y

Lots of small files

Because the namenode holds filesystem metadata in memory, the limit to the num-

ber of files in a filesystem is governed by the amount of memory on the namenode.

As a rule of thumb, each file, directory, and block takes about 150 bytes. So, for

example, if you had one million files, each taking one block, you would need at least

300 MB of memory. Although storing millions of files is feasible, billions is beyond
the capability of current hardware.*

3) Multiple writers, arbitrary file modifications

Files in HDFS may be written to by a single writer. Writes are always made at the 3 GES| supboried thin fuut

end of the file, in append-only fashion. There is no support for multiple writers or wors. soveedu |aned 2 Mm
for modifications at arbitrary offsets in the file. (These might be supported in the ¢ .
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* Disk Blocks: smallst unik o} storage

* Minimum data that can be read

writtenwm disk.
* Typically 512 bytes.

* HDFS blocks

* Much larger unit
* 128MB (in v2) - cwtfomizable

* Files in HDFS are broken into

block-sized chunks, which are
stored as independent units.

* A file in HDFS that is smaller than a

single block does not occupy a full
block’s worth of underlying

storage.
* Use as many disk blocks as

necessary.

Why Is a Block in HDFS So Large?
TLOR -

HDFS blocks are large compared to disk blocks, and thereason is to minimize the cost
of seeks. If the block is large enough, the time it takes to transfer the data from the disk

can be significantly longer than the time to seek to the start of the block. Thus, trans-

ferring a large file made of multiple blocks operates at the disk transfer rate.

A quick calculation shows that if the seek time is around 10 ms and the transfer rate is

100 MB/s, to make the seek time 1% of the transfer time, we need to make the block size

around 100 MB. The default is actually 128 MB, although many HDES installations use
larger block sizes. This figure will continue to be revised upward as transfer speeds grow

with new generations of disk drives.

This argument shouldn’t be taken too far, however. Map tasks in MapReduce normally block $i2e shauddnd e doo
operate on one block at a time, so if you have too few tasks (fewer than nodes in the

cluster), your jobs will run slower than they could otherwise.
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Furthermore, blocks fit well with replication for providing fault tolerance and availa-
bility. To insure against corrupted blocks and disk and machine failure, each block is

replicated to a small number of physically separate machines (typically three). If a block
becomes unavailable, a copy can be read from another location in a way that is trans-

parent to the client. A block that is no longer available due to corruption or machine

failure can be replicated from its alternative locations to other live machines to bring
the replication factor back to the normal level. (See “Data Integrity” on page 97 for more

on guarding against corrupt data.) Similarly, some applications may choose to set a high
replication factor for the blocks in a popular file to spread the read load on the cluster.
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Without the namenode, the filesystem CI;mot be used. In j:jt, f the machine running
the namenode were obliterated, all the files an the filesyst ould be lost since there
would be no way of knowing how to reconstruct the files from the blocks on the
datanodes. For this reason, it is important to make the namenode resilient to failure,
and|Hadoop provides two mechanisms for this.
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The secondary namenode usually
runs on a separate physical machine because it|requires plenty of CPU and as much
memory as the namenode to perform the merge. It keeps a copy of the merged hame-
‘space image, which can-be used-in the event of the mamenode failing: However, the state
of the secondary namenode lags that of the| primary, 'so in the levent of total failure of
the primary, data loss is almost certain. The usual course|of action in this case is to copy
the namenode’s metadata files that are on NFS to the secondary and run it as the new
primary
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Users or applications instruct/the namenode which files to cache (and for how long) by

adding a cache directive to a cache pool. Gache pools are an administrative grouping for

managing ¢ache permissions-andresource usage:
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The default of 1,000 MB of namenode memory is normally enough for a few million

files, but as a rule of thumb for sizing purposes, you can conservatively allow 1,000 MB
per million blocks of storage.

For example, a 200-node cluster with 24 TB of disk space per node, a block size of 128

MB, and a replication factor of 3 has room for about 2 million blocks (or more): 200 x

24,000,000 MB/ (128 MB x 3). So in this case, setting the namenode memory to 12,000
MB would be a good starting point.
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1. What is Fencing? 4. Fencing Mechanisms

- In HA, during failover, there’s a risk the old active NameNode still thinks it's active (due

5 a) Quorum Journal Manager (QJM) Protection
to slow network or partition).

« Built-in safeguard:

- If both actives serve at once - split-brain - metadata corruption.
« Only one NN can write edits.

- Fencing = Mechanism to ensure the old active is completely prevented from making

- Prevents metadata corruption.
any changes.

- But: old NN might still serve stale reads - extra fencing needed.

b) SSH Fencing Command

2. Why Needed? - Admin/script remotely logs in and kills NN process.

- Failover Controller + ZooKeeper can elect one active, but: .
P c) Storage-Based Fencing (NFS case)

« They cannot guarantee the old NN has actually stopped. . Revoke NN's write access to shared directory.

« Fencing is the safety net to enforce a single writer policy. - E.g., vendor-specific NFS command.

d) Network-Level Fencing

3 Fencing Requirements - Disable NN's network port using remote management tools.

+ Must stop old active NN from: e) STONITH (Shoot The Other Node In The Head)

1. Writing to edit logs. - Extreme measure:

2. Serving stale reads to clients. - Forcefully power off the old NN host using a power distribution unit.

- Guarantees it can't interfere.

3. Causing inconsistent namespace state.

HA yutth Shareed Storane & Zookaher
° o ° Options for shared storage:
i Heartbea? - NFS filer (legacy option, weaker fencing).

Namernode (NN)
Active

FailoverController + Quorum Journal Manager (QJM) - recommended.

Standby

+ Runs on 3 or more JournalNodes.

Cmds “ u - Each edit must be written to a majority.

« Tolerates failure of 1 node (with 3 JNs).
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NN Shared NN state NN
Monitor Health . through Quorum
of NN. 0S, HW Active of JournalNodes Standby Monitor Health

of NN. OS, HW

Block Reports to Active & Standby
DN fencing: only obey commands
from active

DN DN DN DN



To‘

HDFS Fault Tolerance
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* Fault tolerance in Hadoop HDFS refers to the working strength of a
system in unfavorable conditions and how that system can handle

such a situation
* HDFS is highly fault tolerant and handled faults.

* There are approaches used for handling faults of data nodes or
disks holding data blocks.

* These could be based on replication, to a replication factor till
Hadoop 3. So whenever if any machine/disk in the cluster

goes down, then data is accessible from other machines/disk
in which the same copy of data was created
¢ Using Erasure coding in Hadoop 3

* There are also approaches to handle faults of Name Node and the
availability of the metadata pointing to the data blocks

HDFS Fault Tolerance (Replication)

UNIVERSITY
T

* Fault tolerance of data using Replicas is achieved by creating a
replica of users’ data based on the replication factor on different

machines in the HDFS cluster.
* So if any machine in the cluster goes down, then data is accessible
from other machines in which the same copy of data was created
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HDFS Fault Tolerance (Erasure Coding)
* Fault tolerance of data could also be based on Erasure coding E«Eng

Erasure coding works similar to RAID by striping the file into small

units of sequential blocks and storing them consecutively on various
disks.

For each strip of the original dataset, a certain number of parity cells
are calculated using erasure coding algorithm called encoding and

stored. If any of the machines fails, the block can be recovered from

th it 1.
ThZZ?':IorYicneany striping —’n*u*ﬂ*ﬂ*n*ﬂ

based on the remaining
data and parity cells;

the process known as
decoding.

cell can be recovered
o Reduced storage overhesd w Data Block
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Start by copying a file from the local filesystem to HDES:

% hadoop fs -copyFromLocal input/docs/quangle.txt \
hdfs://localhost/user/tom/quangle.txt

In fact, we could have omitted the scheme and host of the URI and picked up
the default, hdfs://localhost, as specified in core-site.xml:

% hadoop fs -copyFromLocal input/docs/quangle.txt /user/tom/quangle.txt

We also could have used a relative path and copied the file to our home directory in
HDEFS, which in this case is /user/tom:

% hadoop fs -copyFromLocal input/docs/quangle.txt quangle.txt
Let’s copy the file back to the local filesystem and check whether it’s the same:

% hadoop fs -copyToLocal quangle.txt quangle.copy.txt

% md5 input/docs/quangle.txt quangle.copy.txt

MD5 (input/docs/quangle.txt) = e7891a2627cf263a079fb0f18256ffb2
MD5 (quangle.copy.txt) = e7891a2627cf263a079fb0f18256ffb2




% hadoop fs -mkdir books

% hadoop fs -1s .

Found 2 items

drwxr-xr-x - tom supergroup 0 2014-10-04 13:22 books
-fW-r--r-- 1 tom supergroup 119 2014-10-04 13:21 quangle.txt

The information teturned is very similar to that returned by the Unix command 1s

HDFEFS has a permissions model for files and directories that is much like the POSIX
model. There are three types of permission: the read permission (r), the write permission
(w), and the execute permission (x). The read permission is required to read files or list
the contents of a directory. The write permission is required to write a file or, for a
directory, to create or delete files or directories in it. The execute permission is ignored
for a file because you can’t execute a file on HDES (unlike POSIX), and for a directory
this permission is required to access its children.

Some Basic Operations in HDFS

HDFS provides a command-line interface that mimics standard Unix file
system commands, making it familiar to many users.

e hdfs dfs -1s /:Listthe files and directories in the root directory.

e hdfs dfs -mkdir /mydir: Create a new directory named mydir.

e hdfs dfs -put localfile /mydir/: Copy localfile from the
local file system to the /mydir/ directory in HDFS.

e hdfs dfs -get /mydir/remotefile .:Copy remotefile
from HDFS to the current local directory.

e hdfs dfs -rm /mydir/remotefile: Delete a file from HDFS.

HDFS - DFS Admin Report

HDFS fsck is used to check the health of the file system, to find
missing files, over replicated, under replicated and corrupted blocks.
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Anatomy of a File Read

To get an idea of how data flows between the client interacting with HDES, the name-
node, and the datanodes, consider Figure 3-2, which shows the main sequence of events
when reading a file.

2: get block locations 8
HDES 'Y NameNode
client
namenode
cient JUM
dientnode i e
kreadi 5: read
v T
DataNode DataNode DataNode
datanode datanode datanode

Figure 3-2. A client reading data from HDFS

The client opens the file it wishes to read by calling open() on the FileSystem object,
which for HDFS is an instance of DistributedFileSystem (step 1 in Figure 3-2).
DistributedFileSystenm calls the namenode, using remote procedure calls (RPCs), to
determine the locations of the first few blocks in the file (step 2). For each block, the
namenode returns the addresses of the datanodes that have a copy of that block. Fur-
thermore, the datanodes are sorted according to their proximity to the client (according
to the topology of the cluster’s network; see “Network Topology and Hadoop” on page
70). If the client is itself a datanode (in the case of a MapReduce task, for instance), the
client will read from the local datanode if that datanode hosts a copy of the block (see
also Figure 2-2 and “Short-circuit local reads” on page 308).

The DistributedFileSystem returns an FSDataInputStream (an input stream that
supports file seeks) to the client for it to read data from. FSDataInputStream in turn
wraps a DFSInputStream, which manages the datanode and namenode I/0.

The client then calls read() on the stream (step 3). DFSInputStream, which has stored
the datanode addresses for the first few blocks in the file, then connects to the first
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(closest) datanode for the first block in the file. Data is streamed from the datanode back
to the client, which calls read() repeatedly on the stream (step 4). When the end of the
block is reached, DFSInputStream will close the connection to the datanode, then find
the best datanode for the next block (step 5). This happens transparently to the client,
which from its point of view is just reading a continuous stream.

Blocks are read in order, with the DFSInputStream opening new connections to
datanodes as the client reads through the stream. It will also call the namenode to retrieve
the datanode locations for the next batch of blocks as needed. When the client has
finished reading, it calls close() on the FSDataInputStream (step 6).

During reading, if the DFSInputStream encounters an error while communicating with
a datanode, it will try the next closest one for that block. It will also remember datanodes
that have failed so that it doesn’t needlessly retry them for later blocks. The DFSInput
Stream also verifies checksums for the data transferred to it from the datanode. If a
corrupted block is found, the DFSInputStream attempts to read a replica of the block
from another datanode; it also reports the corrupted block to the namenode.

One important aspect of this design is that the client contacts datanodes directly to
retrieve data and is guided by the namenode to the best datanode for each block. This
design allows HDES to scale to a large number of concurrent clients because the data
traffic is spread across all the datanodes in the cluster. Meanwhile, the namenode merely
has to service block location requests (which it stores in memory, making them very
efficient) and does not, for example, serve data, which would quickly become a bottle-
neck as the number of clients grew.

Network Topology and Hadoop

What does it mean for two nodes in a local network to be “close” to each other? In the
context of high-volume data processing, the limiting factor is the rate at which we can
transfer data between nodes—bandwidth is a scarce commodity. The idea is to use the
bandwidth between two nodes as a measure of distance.

Rather than measuring bandwidth between nodes, which can be difficult to do in prac-
tice (it requires a quiet cluster, and the number of pairs of nodes in a cluster grows as
the square of the number of nodes), Hadoop takes a simple approach in which the
network is represented as a tree and the distance between two nodes is the sum of their
distances to their closest common ancestor. Levels in the tree are not predefined, but it
is common to have levels that correspond to the data center, the rack, and the node that
aprocessis running on. The idea is that the bandwidth available for each of the following
scenarios becomes progressively less:

o Processes on the same node

« Different nodes on the same rack
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o Nodes on different racks in the same data center

o Nodes in different data centers®

For example, imagine a node n1 on rack rI in data center d1. This can be represented
as /d1/r1/nl. Using this notation, here are the distances for the four scenarios:

o distance(/d1/r1/nl, /d1/r1/nl) = 0 (processes on the same node)

o distance(/d1/rl/nl, /d1/r1/n2) = 2 (different nodes on the same rack)

e distance(/d1/r1/nl, /d1/r2/n3) =4 (nodes on different racks in the same data center)
o distance(/d1/r1/nl, /d2/r3/n4) = 6 (nodes in different data centers)

This is illustrated schematically in Figure 3-3. (Mathematically inclined readers will
notice that this is an example of a distance metric.)

=

d=2}

r1 r2 3 rack

d1 d2 data center

Figure 3-3. Network distance in Hadoop

Finally, it is important to realize that Hadoop cannot magically discover your network
topology for you; it needs some help (we’ll cover how to configure topology in “Network
Topology” on page 286). By default, though, it assumes that the network is flat—a single-
level hierarchy—or in other words, that all nodes are on a single rack in a single data
center. For small clusters, this may actually be the case, and no further configuration is
required.

8. At the time of this writing, Hadoop is not suited for running across data centers.
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Anatomy of a File Write

Next we'll look at how files are written to HDFES. Although quite detailed, it is instructive
to understand the data flow because it clarifies HDFS’s coherency model.

We're going to consider the case of creating a new file, writing data to it, then closing
the file. This is illustrated in Figure 3-4.

T Distributed 2: create
HDFS e FileSystem 7: complete NameNode
client .

FSData namenode
OutputStream

cient JVUM A

\ 20 4

cient node

4: write packet 5: ack packet

A

Pipeline of DataNode | DataNode  [J % DataNode
datanodes
datanode datanode datanode
4

Figure 3-4. A client writing data to HDFS

The client creates the file by calling create() on DistributedFileSystem (step 1 in
Figure 3-4). DistributedFileSystem makes an RPC call to the namenode to create a
new file in the filesystem’s namespace, with no blocks associated with it (step 2). The
namenode performs various checks to make sure the file doesn't already exist and that
the client has the right permissions to create the file. If these checks pass, the namenode
makes a record of the new file; otherwise, file creation fails and the client is thrown an
I0Exception. The DistributedFileSystem returns an FSDataOutputStream for the
client to start writing data to. Just as in the read case, FSDataOutputStream wraps a
DFSOutputStream, which handles communication with the datanodes and namenode.

As the client writes data (step 3), the DFSOutputStrean splits it into packets, which it
writes to an internal queue called the data queue. The data queue is consumed by the
DataStreamer, which is responsible for asking the namenode to allocate new blocks by
picking a list of suitable datanodes to store the replicas. The list of datanodes forms a
pipeline, and here we’ll assume the replication level is three, so there are three nodes in
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the pipeline. The DataStreamer streams the packets to the first datanode in the pipeline,
which stores each packet and forwards it to the second datanode in the pipeline. Sim-
ilarly, the second datanode stores the packet and forwards it to the third (and last)
datanode in the pipeline (step 4).

The DFSOutputStream also maintains an internal queue of packets that are waiting to
be acknowledged by datanodes, called the ack queue. A packet is removed from the ack
queue only when it has been acknowledged by all the datanodes in the pipeline (step 5).

If any datanode fails while data is being written to it, then the following actions are
taken, which are transparent to the client writing the data. First, the pipeline is closed,
and any packets in the ack queue are added to the front of the data queue so that
datanodes that are downstream from the failed node will not miss any packets. The
current block on the good datanodes is given a new identity, which is communicated to
the namenode, so that the partial block on the failed datanode will be deleted if the failed
datanode recovers later on. The failed datanode is removed from the pipeline, and a
new pipeline is constructed from the two good datanodes. The remainder of the block’s
data is written to the good datanodes in the pipeline. The namenode notices that the
block is under-replicated, and it arranges for a further replica to be created on another
node. Subsequent blocks are then treated as normal.

It’s possible, but unlikely, for multiple datanodes to fail while a block is being written.
Aslong as dfs.namenode.replication.min replicas (which defaults to 1) are written,
the write will succeed, and the block will be asynchronously replicated across the cluster
until its target replication factor is reached (dfs.replication, which defaults to 3).

When the client has finished writing data, it calls close() on the stream (step 6). This
action flushes all the remaining packets to the datanode pipeline and waits for ac-
knowledgments before contacting the namenode to signal that the file is complete (step
7). The namenode already knows which blocks the file is made up of (because Data
Streamer asks for block allocations), so it only has to wait for blocks to be minimally
replicated before returning successfully.

Replica Placement

How does the namenode choose which datanodes to store replicas on? There’s a trade-
off between reliability and write bandwidth and read bandwidth here. For example,
placing all replicas on a single node incurs the lowest write bandwidth penalty (since
the replication pipeline runs on a single node), but this offers no real redundancy (if the
node fails, the data for that block is lost). Also, the read bandwidth is high for off-rack
reads. At the other extreme, placing replicas in different data centers may maximize
redundancy, but at the cost of bandwidth. Even in the same data center (which is what
all Hadoop clusters to date have run in), there are a variety of possible placement
strategies.
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Hadoop’s default strategy is to place the first replica on the same node as the client (for
clients running outside the cluster, a node is chosen at random, although the system
tries not to pick nodes that are too full or too busy). The second replica is placed on a
different rack from the first (off-rack), chosen at random. The third replica is placed on
the same rack as the second, but on a different node chosen at random. Further replicas
are placed on random nodes in the cluster, although the system tries to avoid placing
too many replicas on the same rack.

Once the replica locations have been chosen, a pipeline is built, taking network topology
into account. For a replication factor of 3, the pipeline might look like Figure 3-5.

node

rack

data center

Figure 3-5. A typical replica pipeline

Opverall, this strategy gives a good balance among reliability (blocks are stored on two
racks), write bandwidth (writes only have to traverse a single network switch), read
performance (there’s a choice of two racks to read from), and block distribution across
the cluster (clients only write a single block on the local rack).

Coherency Model

A coherency model for a filesystem describes the data visibility of reads and writes for
a file. HDFS trades off some POSIX requirements for performance, so some operations
may behave differently than you expect them to.

After creating a file, it is visible in the filesystem namespace, as expected:

Path p = new Path("p");
fs.create(p);
assertThat(fs.exists(p), is(true));
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