Jamy

aE
8
5,#;.
;

L ousn s 0's @} wmj
Lﬂ»\-' MQMM.M jun of He 'Wauhbr
w/o L u_&galmm

o OFS /3 m% owthi e

* Hadoop is the adoption of open-source implementation by Yahoo (now Apache project)

processing vast amounts of data in a distributed environment, offering several key advantages:

e Parallel Processing: MapReduce enables the parallel processing of data across multiple servers in a

distributed computational environment, which significantly boosts performance.

expensive network traffic and improves efficiency.

e |ts an execution framework for large-scale data processing

distributed manner

* Distributed implementation that hides all the messy details
* Fault tolerance (thus provides High Availibility)

* 1/0 scheduling
* parallelization

* Uses Divide and conquer — Partitions large problem into smaller subproblems

processor, multiple processor in a machine, machines in a cluster) and produce

intermediate results

* Intermediate results from workers are combined to form the final result

* MapReduce is the central processing component of the Hadoop framework. It provides a programming model for

e (Data Locality: This is a fundamental principle of MapReduce. Instead of moving large amounts of data to the
processing unit, the framework moves the processing logic to where the data is already stored.This reduces

* Which distributes the computing across distributed commodity servers and then pulls the results together
* Programmer writes code as if writing for a single machine but the framework executes the process in

* Workers work on sub-problems in parallel (could be threads in a core or cores in multi-core

Termi y: M f O awark that iovik wat purfanimed
ivided inke tooke - ma} toaks

5 scheduded g YARN | ansthos

e s g B (|0 S ik —— o}

"0 / Map Reduce Split size considerations
9 D ’

« split size proportional to parallelism

+ Small split size

M~ * Advantages
+ Large #isplits

« Increased parallelism

o " 1 (74 .

\Hu Ohﬂﬂlo.q va'l" o head of managing the splits and of map task
|k 5 JNn M,

= . « begins to dominate the total job execution time.

sige in HORS rengd iy o)
T A wl + 1 default) on Hadoop v3

L]
‘ m.M wovcﬁ]codlvx‘r zxoTﬂ\lolie

input | map | shuffle | reduce > output
E 0, 0067011990..; (1950, og i h
106, 0043011990.. (1950, 22
(212, 0043011990 f--p] (1950, -11) p-pf (1949, (1178 E [(1949, 111)
(318, cod3012650.) (isdo. 111) (1950, [0, 22, -11]) (1950, 22)
(424, 0043012650..) (1949, 78) b
cat:* | map.rb | sort | reduce.rb > output

Figure 2-1. MapReduce logical data flow

fite : | hello wovld people

love hello

people | hello

e {[p |ile s smad)|, & wldd Spaupr juat |ms \maffun,
M&mM}sMw&mﬂ&mm‘u

|,I|e- mophin : <|ﬂ.¢3,vaﬂm>
¢ L P e ling nund & e ote, juak oo Soeample | it contel e diff dojumding on ou
W line nym |1
lovadiy : D | hello w?v\o\ }’thle ~? mnHwL:l
1, love | hello » MmajhwL 2
2, peopie hello| hejlo B 3
< holley. | 1>
lWt)r\o\) 9
“bm"p'{a 17
2 ¢ love , 1>
¢ hello, 4>
3 <peohie; 1>
hell 54>
o) [$hane Qufwd go- s
shuglss. eotk
. 3'1'
‘“"qs 8“‘%"'“"* ' <ﬁr\o\ 1
<peplr, L7
<lode , 1>
<N 'io’ v
<MJ£ 1>
<hejlo, |1 >
g',P g_l‘ hu%\‘g Sor f hatllg = [1’1,3,1:
warld = 1)
peaie—= [1]
lowR » [1]
olp 8|, S8 is|_ifp 48 swduuan mwmmnmw»nﬁ 04 oo
$v4ul wihhﬂ(authaks h:Lu.l Je {rame
(/CIP - ' gg‘?&a vidumzk\!nm oA ranuJJulumbakab
,Staxed 1 HOFS :|ows voblica
: fslﬂ !m le |2
Yook nods . love 2\

Splitting Mapping

KKR CSK RCB

KKR CSK RCB
DD DD RCB

DD DD RCB

KKR DD CSK

KKR DD CSK

Shuffling

Reducing

Output

input
HDFS
sort
Sp“to =Y map =
copy
output
HDFS
merge
split 1 =4 ~pi part) =P HDFS
replication
split2
Figure 2-3. MapReduce data flow with a single reduce task
input
HDFS
output
split0 HDFS
~pi part0 #=——p HDFS
replication
split1
~pi part] =P HDFS
replication

split2

Figure 2-4. MapReduce data flow with multiple reduce tasks

When there are multiple reducers, the map tasks partition their output, each creating
one partition for each reduce task. There can be many keys (and their associated values)
in each partition, but the records for any given key are all in a single partition. The
partitioning can be controlled by a user-defined partitioning function, but normally the
default partitioner—which buckets keys using a hash function—works very well.

Finally, it’s also possible to have zero reduce tasks. This can be appropriate when you

don’t need the shuffle because the processing can be carried out entirely in parallel

whenever the problem does not require grouping, aggregating, or combining
across multiple records, a reducer is unnecessary.

By Log |jl {ilening

(ovbingz jumciton

« Task Goal: Extract only the error messages (lines containing "ERROR") from large log
files.

« Why reducer is not needed: Each log line can be independently checked by the
mappers. We don't need to aggregate or combine results — just output matching lines.

Data Flow

1. Input: A set of log files distributed across HDFS. Example:

2. Mapper Function:
« Reads each line.
+ Checks if the line contains "ERROR".
- If yes, outputs the line.

« If not, outputs nothing.
Example pseudocode:

python

f map(key, value):

3. Reducer:

+ Not needed.

« The framework can directly write mapper output to HDFS.

4. Output:

No reduc),

input output

______ HOFS o HDES

tosplitQ el g map SR b-——b HDFS
........... m replication
tosplitT oo 4 map ERER >—> HDFS
........... replication
tosplit2 g 4 Mmap SR >—} HDFS
........... replication

Many MapReduce jobs are limited by the bandwidth available on the cluster, so it pays
to minimize the data transferred between map and reduce tasks. Hadoop allows the user

to specify a combiner function to be run on the map output, and the combiner function’s
output forms the input to the reduce function. Because the combiner function is an
optimization, Hadoop does not provide a guarantee of how many times it will call it for
a particular map output record, if at all. In other words, calling the combiner function
zero, one, or many times should produce the same output from the reducer.

8| R ”

(AL) (82)

(AD) 0.0 3 [y
T | | ["UMSRRSERY) | (¢ | "ESOMBNEEY |)
2B | | o1 | (ED
“ e *ls ve— | IW{
el ~ > [
~ D) | on | _ p—
gich A ’im.z) »
3 |(0A) | | AD : (A.2)

coy | IS |) | - EOBRE] |) |

€8) | L@ || LI @D

€0) 1 -

a2 |
(8,121 |

0.122D|]
€ |

* Combine multiple map outputs before doing a

reduce

* Can write a combiner function in program
* Combiner will be run before reduce

* Mini-reducer

Jaa]
(8,3)

(C, (1) | »| Reducer i ((C.2)|

|, 0|
[(ED)

MMWMMM&,&MWWMM n{, ech wod in | o e
ilplang « |[ile :| bello world beol beaple |peohle
) i |\] LN T L
lo ello| love lgue
people | hello hello
w/o e : | all P mw{amimTﬁmzad fo. ssduwe
olb T m 4 < holl 1
(1o L~ 8 JA—Q <+
<warld | 4.3
B b MR, L7
PR, 17
“penpin+
2 <love , 9>
< hello, 1>
<loye , 1>
<love , 5
3 < 1>
hd LAY 9
K hello , 4 >
¢ hello , 1 >
W INUIT
. <
ofp ahhirp mahhet 1 5., 1 N
< world b 1P
<paoMz 2 > -)
b 7 oLy e s in e
2 <love, B> J
2 hdttala s ‘?ﬁw u“dj
- I‘Q.HUJ L7 \
3 <pm{,|g 1>
v
<hejlo |2~
This is best illustrated with an example. Suppose that for the maximum temperature
Sjamblg d example, readings for the year 1950 were processed by two maps (because they were in
different splits). Imagine the first map produced the output: . .
(1950, 0) # Combingr I’}J a@umeJ
(1950, 20)
(1950, 10) my | JAn | KA
and the second produced: .
unetom
(1950, 25)]
(1950, 15)
The reduce function would be called with a list of all the values:
(1950, [0, 20, 10, 25, 15])
with output:
(1950, 25)
since 25 is the maximum value in the list. We could use a combiner function that, just
like the reduce function, finds the maximum temperature for each map output. The
reduce function would then be called with:
(1950, [20, 25])
the combiner functionis defined using
the Reducer class, and for this |application, itis the same implementation as the reduce
function in MaxTemperatureReducer. The only change we|need to make is to set the
combiner class on the Job

High level view

Node 1 Node 2

Files loaded from local HDFS stores Files loaded from local HDFS stores

InputFormat

?i?i?i

Input (k, v) pairs

ﬂ

!
1

I"-vll"-vll-'-vl

Intermediate (k, v) pairs

(k. v}
pairs exchanged
by all nodes

g g g, o o o o 9

Hadoop Streaming

Hadoop provides an API to MapReduce that allows you to write your map and reduce
functions in languages other than Java. Hadoop Streaming uses Unix standard streams
as the interface between Hadoop and your program, so you can use any language that

can read standard input and write to standard output to write your MapReduce
program.’

Streaming is naturally suited for text processing. Map input data is passed over standard
input to your map function, which processes it line by line and writes lines to standard
output. A map output key-value pair is written as a single tab-delimited line. Input to
the reduce function is in the same format—a tab-separated key-value pair—passed over
standard input. The reduce function reads lines from standard input, which the frame-
work guarantees are sorted by key, and writes its results to standard output.

