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Figure 4-2. How YARN runs an application
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YARN (Yet Another Resource Negotiator) applications can run for varied durations, from a few seconds

to several months. A more practical way to understand them is by categorizing them based on how they

correspond to user jobs. There are three primary models.

## Model 1: One Application per Job

This is the simplest and most direct approach. A brand new, dedicated application is launched for every

single job a user submits. Once the job is finished, the application terminates.
+ Analogy: Think of it like hailing a new taxi for every single trip you make. £
Key Characteristic: Simplicity and isolation. Each job runs in its own environment
Drawback: It can be inefficient, as there is an overhead cost associated with starting a new
Application Master for each job. ## Model 3: Shared, Long-Running Application

Example: MapReduce follows this model. . . L . o
e £ i This model involves an "always-on" application that runs continuously on the cluster and is shared by

many different users. It typically serves as a coordinator or a proxy for user requests.

## Model 2: One Application per Workflow or Session S a n o . 5
« Analogy: This is similar to a public bus service. It's always running on its route, and many different

In this model, a single application is created to handle a complete workflow or a user’s entire session, passengers (users) can hop on to make their requests (queries) at any time. B8

which may consist of multiple, potentially unrelated, jobs. The application remains active for the duration . . N )
 the Key Characteristic: Very low latency. Since the application is already running, users get near-
of the session
instant responses because the time-consuming step of starting an Application Master is completely
« Analogy: This is like hiring a car for the entire day to run all your errands. The car (the ided
avoil e
application) waits for you between your stops (the jobs). &

e 4 les:
Key Characteristic: Efficiency. Containers can be reused across different jobs, and intermediate ERSERSS

data can be cached, which speeds up the overall process. « Apache Slider: Launches other applications on the cluster.

Example: Spark uses this model, creating an application for an interactive user session « Impala: Uses a proxy application for its daemons to request cluster resources quickly.
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The FIFO Scheduler has the merit of being simple to understand and not needing any
configuration, but it’s not suitable for shared clusters. Large applications will use all the
resources in a cluster, so each application has to wait its turn. On a shared cluster it is

better to use the Capacity Scheduler or the Fair Scheduler. Both of these allow long-
running jobs to complete in a timely manner, while still allowing users who are running

concurrent smaller ad hoc queries to get results back in a reasonable time.
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* Consider a user who submits more jobs

* Scheduler ensures that user does not hog the cluster

* Custom pools

* Guaranteed minimum capacities with map/reduce slots

* Itis also possible to define custom pools with guaranteed minimum capacities defined in terms

of the number of map

* The Fair Scheduler supports preemption

* If pool not received its fair share over certain time

* scheduler will kill tasks in pools running over capacity
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| Figure 4-3. Cluster utilization over time when running a large job and a small job un-
der the FIFO Scheduler (i), Capacity Scheduler (ii), and Fair Scheduler (iii)
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