DI M : gd- anothey reseurce for
4AA “”
Jn &').\.
« Job —the entire map reduce application » Manage Cluster resources T L 7 T T, s
* Task — Individual mappers/reducers « Job scheduling Clont | T ‘ monitoring |
Ciert } Y R — "« JobTracker is the single point of availability/failure .
* How do we * Task Tracker i | &
* Allocate resources — determine which nodes will run the jobs =+ One per task ‘\ = : . e = T E—
* Monitor the tasks — start new tasks or restart failed/slow tasks * Manage the task Eeey ‘ \ | m{"’;"‘"’ T . =
* Monitor the overall state of the job? | \ [Tautaow ‘ .Z:vq“""ri
S Pl Tolerarce: Chistai resouitia: Sdi pesdr byt [« Tightly integrated with Hadoop. Only MR apps can run. Can't coexist with other applications.
management and scheduling ﬁ%‘gﬁgﬁ%‘:’ m m |
handled by JobTracker anthe e
7 Ha m'b'(clugter yvegouvce m.cmr_agekm
- Provida It opficakons , oo dovik wenelly duudiy R o gawm
[pig ([hive J(-] < Mot offiliceions duudt on |MR, $hark ete .
Application [MapReduce][Spark][Tez][] e—— |Dsers Use)
cnpue | -] ’ Yaun_momage AGURCD
Storage [HDFS and HBase]
Pnatovay o YARN ablticabers suum
LL
YARN sumy o | dogwone
] Resource Manng (ng er clue Lm) mgmogummmwmodmm o
3 Nedo Mamogess [rw n._o.!Lngd.uD laumchws € monitara | amfoingon
JPLo S e 6 e, o " 2. o) o e, S o "
1 1 1 1
) icati | 1 |
- Apg:;::ttlon - e : ResourceManager :
1 dientnode | application 1 resource managernode ; /com Jowmd O onfingt
o e - E N e - o,
y 3
2a: start contamerl
; b
: y |3:allocate resources (heartbeat)
\ NodeManager 1
1]
hos swamurcs: ! :
Coninpinty Sot by YARN i 2b:launch : optonal i . usk simply San. ompy
P W- <‘,‘\\ y : 5 mdqu.mdu m-l-u_
configura Yian : Container R . i
Triso wum < Application ; > NodeManager | |
v]
proceso ©onigned fo ! process D dasstart 1 s i w“k”‘“”"’ U
i | 1
& Cavo \ 1 Container | provs e -
$ uP - node manager node : } u y '
b - 4
(é (goup IS o : Container :
) |
bosorul klﬂ"‘w'f! in -Udu:lhd £ : Application :
o K]] rocess i
wan i josd o L .
moniton H soseMRe. doage ! !
y node managernode
b oo - El
Figure 4-2. How YARN runs an application

Yo, gesuwue vegpeath

T toa Joxible modi\ | mukwy Jwourct Tegech jom. Reue Mamagen

T Appicalian moskw | sogueots M to aMocab o aet o) ontuwm 4 gwn shcify o
) (oo gwsanness (¢PU, mema) | foe | Sach. Condmi e
A lowlily oo ity (e He untuinen

3 Ty suquat sont iy AN te RN Onfis |) haw mudy qusdlus . 9och tnlauner
) e @) tndingm
D dowlidy v anch_ tontainge (ostnams [k nam)
W) briovity o saqpeal

T The modd s {lexible , JesmuRe Faguae anmdmmo&mamw moppliw-kx;n do.)wnvm/vg
AM cam soguat ol thlront & abo dynamicolly oegueat

Yown. .ohipuation Sife cham

YARN (Yet Another Resource Negotiator) applications can run for varied durations, from a few seconds

to several months. A more practical way to understand them is by categorizing them based on how they

correspond to user jobs. There are three primary models.

Model 1: One Application per Job

This is the simplest and most direct approach. A brand new, dedicated application is launched for every

single job a user submits. Once the job is finished, the application terminates.
+ Analogy: Think of it like hailing a new taxi for every single trip you make. £
Key Characteristic: Simplicity and isolation. Each job runs in its own environment
Drawback: It can be inefficient, as there is an overhead cost associated with starting a new
Application Master for each job. ## Model 3: Shared, Long-Running Application

Example: MapReduce follows this model. . . L . o
e £ i This model involves an "always-on" application that runs continuously on the cluster and is shared by

many different users. It typically serves as a coordinator or a proxy for user requests.

Model 2: One Application per Workflow or Session S a n o . 5
« Analogy: This is similar to a public bus service. It's always running on its route, and many different

In this model, a single application is created to handle a complete workflow or a user’s entire session, passengers (users) can hop on to make their requests (queries) at any time. B8

which may consist of multiple, potentially unrelated, jobs. The application remains active for the duration . . N)
 the Key Characteristic: Very low latency. Since the application is already running, users get near-
of the session
instant responses because the time-consuming step of starting an Application Master is completely
« Analogy: This is like hiring a car for the entire day to run all your errands. The car (the ided
avoil e
application) waits for you between your stops (the jobs). &

e 4 les:
Key Characteristic: Efficiency. Containers can be reused across different jobs, and intermediate ERSERSS

data can be cached, which speeds up the overall process. « Apache Slider: Launches other applications on the cluster.

Example: Spark uses this model, creating an application for an interactive user session « Impala: Uses a proxy application for its daemons to request cluster resources quickly.

1. Run

Overvi

- ap ﬁ ication

BIG DATA
YARN Components

BIG DATA |
YARN Architecture PES
nversTTY
" ResourceManager (RM) ——
* Split (NM)
ibili - Keeps track of live i
risj pz!))n_?l bi I;(ty and available resources : Iﬁ"' forr’r'\‘ e aces
or Job lracker - Allocates available resources to NodeManager .
appropriate applications and tasks gm?gss processes running in
* Resource - Monitors application masters = 1 |——1
MR app G‘I;xh
Manager — master
manage (AM)
cluster wide m """" Resource [] -C the execution of all
resources manager L l:ss:ss'vnltm its ap;:nwuon
h - for appropriate resource
* Application containers to run tasks 1
Master —
manage Containers
lifecycle of Client NoveMianoec - Can run different types of i
application EE——— m m e 'ﬁi'éfa‘ri';” Application
of application task - Has different sizes e.g. RAM,
supported by YARN CPU R

Resource Manager

Node Manager

Container

amongst all of the system
«Per machine slave
ible for
«Monitors resource usage
appropriate from the

«Track and monitor the progress of the containers

«Unit of such as memory, CPU,

disk

PES

UNIVERSITY
oy

AR

g eals

i MO STOUNUITLL

YA

ed jrwmaedieR

FI

(Ut

Y

(G
-

*L

Al

-=.

=

R Shared Moy | i fo ofiodly 01 o achedulis

The FIFO Scheduler has the merit of being simple to understand and not needing any
configuration, but it’s not suitable for shared clusters. Large applications will use all the
resources in a cluster, so each application has to wait its turn. On a shared cluster it is

better to use the Capacity Scheduler or the Fair Scheduler. Both of these allow long-
running jobs to complete in a timely manner, while still allowing users who are running

concurrent smaller ad hoc queries to get results back in a reasonable time.

) wmﬁ%mg& L B B Smal) joby ga £ st .00
L 6 mars sobmitted
V0, quans. doon hauy S beod. tome. cahouly i m small jolo
b ke [0 fod bit lﬁf_ . FTFO
. Wwaunrd swelues
3
Joeksd | Vo | renmures

Yo s il gt | aMjeb stoekr | liret ok is [rasing wh seme ghaes

* Consider a user who submits more jobs

* Scheduler ensures that user does not hog the cluster

* Custom pools

* Guaranteed minimum capacities with map/reduce slots

* Itis also possible to define custom pools with guaranteed minimum capacities defined in terms

of the number of map

* The Fair Scheduler supports preemption

* If pool not received its fair share over certain time

* scheduler will kill tasks in pools running over capacity

i. FIFO Scheduler

utilization
A

—_f - - -
—

FIFO queue

job1 job2

] submitted submitted

L ii. Capacity Scheduler

— A

utilization

» time

queue B

B A T
—_

queue A

» time

job1 job2
submitted submitted

— T iii. Fair Scheduler
1 utilization

A

fair share
pool/queue

Sl job1 job2

submitted submitted

» time

| Figure 4-3. Cluster utilization over time when running a large job and a small job un-
der the FIFO Scheduler (i), Capacity Scheduler (ii), and Fair Scheduler (iii)

Capacity Scheduler Fowr Schﬂduhl}
utilization '
) foa ATS A
[' 1
| 3 queve 8
queue-1 queve-2 queue-3 | o (fair share)
il v 2
1 1
| Guaranteed 4 5
ROSOUFBS . ¥ . g
‘ ; | Tk queue A
L ' 1 (fair share)
; ; ; noHd i
L — » time
submitted ' submitted
job 2

submitted

